
Before we start…
 This is the Introduction to Databases

Queries and Analytics workshop

 Download material: dartgo.org/db-query

 More info: rc.dartmouth.edu

http://dartgo.org/db-query

Hands-on Introduction to
MySQL Queries and

Analytics
Christian Darabos, PhD

Material download: dartgo.org/db-query
http://www.mysqltutorial.org/

http://dartgo.org/db-query

Overview

● Introduction to Databases
and this workshop

● Development vs.
production environments

● tools (admin, browse,
query, etc.)

● Queries and Analytics in
SQL — case study

● Concluding remarks

Definition of a
Relational Database (SQL)

● a database type structured to
recognize relations among stored
items of information

● designed to store text, dates/times,
integers, floating-point number

● implemented as a series of tables

SQL vs. NoSQL
SQL NoSQL

Relational Databases distributed database

table based document based, key-value pairs, graph
databases or wide-column stores

predefined schema dynamic schema for unstructured
data

vertically scalable (more powerful
hardware) horizontally scalable (more hardware)

SQL (structured query language) proprietary language

MySql, Oracle, Sqlite, Postgres,
MariaDB, …

MongoDB, BigTable, Redis,
RavenDb, Cassandra, …

Why use a
Relational Database

● concurrent (simultaneous) read and write

● powerful selecting, filtering and sorting
cross-referencing tables

● large quantity of structured storage and standardized
distribution

● minimize post-processing (simple analytics tools
pre-implemented)

● automate using any scripting and programming
languages (R, Matlab, Python, C++, Java, PHP)

● web-proof

Development Environment
● MAMP / MAMP Pro

● Windows & Mac OS X

● Web servers: Apache, Ngnix

● Data Base server: MySQL

● Web/DB admin tools: phpMyAdmin,

phpLiteAdmin

● Scripting: PHP, Python, Perl

● User friendly: “Web Start”

Production Environment

● Research Computing

● Institutional Information Systems &
Services

● Cloud services (AWS, Azure, Google
Cloud, etc.)

● Google: free database hosting :)

Accessing the DB

First, navigate to:

http://dartgo.org/pma

○ Log in via DUO/SSO

Then:

○ username: workshop
password: learndb

http://dartgo.org/pma

What is a QUERY?

● A query is a question:

○ How many clients are named Paul?

○ What is the sales peoples’ average
sales sum in December?

● The answer is given in the form of a
table

Case Study

● A toy classic car company keeps track of:
○ Employees, Offices and Customers
○ Orders and Payment methods
○ Products and Product Lines

Case Study DB

dartgo.org/db-query

http://dartgo.org/db-query

Case Study DB

● browse content, edit structure, search, insert,
empty or drop

● feel free to click around and explore the UI

Browsing the Content
Using the UI:

● select the “classic_model_cars”
database

● select the “employee” table

● click on the “Browse” tab

SELECT * FROM `employees`

UI Search Form
Using the UI’s “Search” tab, search for:

● all employees with last name “Firrelli”

● all employees whose first name is NOT “Leslie”

● all employees whose job title contains “sale”

UI Search Form
Using the UI’s “Search” tab, search for:

● all employees with last name “Firrelli”

SELECT * FROM `employees` WHERE `lastName` LIKE 'firrelli'

● all employees whose first name is NOT “Leslie”

SELECT * FROM `employ

● all employees whose job title contains “sale”

Search Operators
= : equals

> : greater than

>= : greater than or equals

< : smaller than

<= : smaller than or equals

!= : not equals

LIKE / NOT LIKE: case insensitive comparison

LIKE %…% : contains

IN / NOT IN (…) : equals one of the values in (…)

BETWEEN / NOT BETWEEN: between 2 values

IS NULL / IS NOT NULL : value is “NULL”

UI Limitations

The search form in the UI is limited:

● one table at a time

● one value at a time

● no arithmetic

● no grouping

SQL Query in UI

● at the database level

○ select the database

○ SQL (or Query tab for more advanced users)

● at the table level

○ select the database

○ select the table

○ SQL tab

○ hit “SELECT *” button, if table name is missing

SELECT statement
● The SELECT statement controls which columns and

rows that you want to see of the tables specified in
the FROM section of the statement.

● The result(s) of a SELECT statement is always a
table

● SELECT * shows ALL the columns

Eliminate Duplicates
In order to remove these duplicate rows, you use the
DISTINCT clause in the SELECT statement.

You can use the DISTINCT
clause with more than one

column.

Solution

● SELECT DISTINCT city FROM offices

Filterning

The WHERE clause allows you to specify exact rows
to select based on a particular filtering expression or
condition.

Logical Operators
You can have more than one condition by using
logical operator like AND and OR.

AND : both conditions have to be satisfied
OR : at least one condition has to be satisfied

Get Dirty
● list all the unique employee first names

● who reports to employee #1102?

● which sales rep report to #1088?

● whose phone extension starts with a 4?

● whose phone extension contains a 3 or a 5?

Get Dirty
● list all the unique employee first names

● who reports to employee #1102?

● which sales rep report to #1088?

● whose phone extension starts with a 4?

● whose phone extension contains a 3 or a 5

SELECT DISTINCT firstName FROM `employees`

SELECT * FROM employees WHERE reportsTo = 1102

SELECT * FROM employees WHERE reportsTo = 1088
AND jobTitle LIKE 'sales rep'

SELECT lastname, firstname, extension FROM employees
WHERE extension LIKE '%3%' OR extension LIKE '%5%'

SELECT lastname, extension FROM employees
WHERE extension LIKE 'x4%'

Sorting
When you use the SELECT statement to query data
from a table, the result set is not sorted in any
orders. To sort the result set, you use the ORDER
BY clause. The ORDER BY clause allows you to:

● Sort a result set by a single column or multiple
columns.

● Sort a result set by different columns in ascending
(ASC) or descending order (DESC).

Sorting

Aliasing
● To give a column a descriptive name, you use a

column alias.

Grouping
● The GROUP BY clause, which is an optional

part of the SELECT statement, groups a set of
rows into a set of summary rows by values of
columns or expressions. The GROUP BY clause
returns one row for each group.

● We often use the GROUP BY clause with
aggregate functions such as SUM, AVG, MAX,
MIN, and COUNT. The aggregate function that
appears in the SELECT clause provides the
information about each group.

Aggregate functions

GROUP BY

Get Dirty
● the total quantity and average item price

for each order

● the number, in descending order, of
different product for each order

● the cheapest product

● how many products are in the “Vintage
Cars” product line

Get Dirty
● the total quantity and average item price

for each order

● the number, in descending order, of
different product for each order

● the cheapest product

● how many products are in the “Vintage
Cars” product line

Joining

● The MySQL INNER JOIN clause matches rows in
one table with rows in other tables and allows you
to query rows that contain columns from both
tables.

Join example 1

How to get…

● The product code and product name from the products table.

AND

● The text description of product lines from the productlines table.

Join example 1

How to get…

● The product code and product name from the products table.

AND

● The text description of product lines from the productlines table.

Join example 1

How to get…

● The product code and product name from the products table.

AND

● The text description of product lines from the productlines table.

Join example 2

● We can get the order number, order status and
total sales from the orders and orderdetails tables
using the INNER JOIN clause with the GROUP BY
clause as follows:

Get Dirty

• get a list of employees names and
the city of their office. First and
last name may remain separate
columns.

Get Dirty

● get a list of employees names
and the city of their office

More Joins

String
Functions

• https://dev.mysql.com/
doc/refman/5.7/en/stri
ng-functions.html

https://dev.mysql.com/doc/refman/5.7/en/string-functions.html
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html

Get Dirty
● get a list of employees names and the city

of their office

● and the number of customers they work
with

● order by the descending nb of customers

Get Dirty
● get a list of employees names and the city

of their office

● and the number of customers they work
with

● order by the descending nb of customers

Get Dirty
● get a list of employees names and the city

of their office, the number of customers
they work with, order by the descending
nb of customers

● how many sales in 2004

● for how much total money

Get Dirty
● get a list of employees names and the city of their office, the number of

customers they work with, order by the descending nb of customers

● and how many sales

● how many sales in 2004

● for how much total money

Insert, Update, Replace,
Delete and So Much more…

● mysqltutorial.org — “Basic MySQL Tutorial”

● lynda.dartmouth.edu — search “SQL” or “Database”

● dev.mysql.com/doc/

http://www.mysqltutorial.org
http://lynda.dartmouth.edu
https://dev.mysql.com/doc/

Announcements
More RC workshops:

○ https://rc.dartmouth.edu > Training

Support:

○ christian.darabos@dartmouth.edu

○ research.computing@dartmouth.edu

https://rc.dartmouth.edu
mailto:christian.darabos@dartmouth.edu
mailto:research.computing@dartmouth.edu

